23 research outputs found

    Automating the Correctness Assessment of AI-generated Code for Security Contexts

    Full text link
    In this paper, we propose a fully automated method, named ACCA, to evaluate the correctness of AI-generated code for security purposes. The method uses symbolic execution to assess whether the AI-generated code behaves as a reference implementation. We use ACCA to assess four state-of-the-art models trained to generate security-oriented assembly code and compare the results of the evaluation with different baseline solutions, including output similarity metrics, widely used in the field, and the well-known ChatGPT, the AI-powered language model developed by OpenAI. Our experiments show that our method outperforms the baseline solutions and assesses the correctness of the AI-generated code similar to the human-based evaluation, which is considered the ground truth for the assessment in the field. Moreover, ACCA has a very strong correlation with human evaluation (Pearson's correlation coefficient r=0.84 on average). Finally, since it is a fully automated solution that does not require any human intervention, the proposed method performs the assessment of every code snippet in ~0.17s on average, which is definitely lower than the average time required by human analysts to manually inspect the code, based on our experience

    Who Evaluates the Evaluators? On Automatic Metrics for Assessing AI-based Offensive Code Generators

    Full text link
    AI-based code generators are an emerging solution for automatically writing programs starting from descriptions in natural language, by using deep neural networks (Neural Machine Translation, NMT). In particular, code generators have been used for ethical hacking and offensive security testing by generating proof-of-concept attacks. Unfortunately, the evaluation of code generators still faces several issues. The current practice uses automatic metrics, which compute the textual similarity of generated code with ground-truth references. However, it is not clear what metric to use, and which metric is most suitable for specific contexts. This practical experience report analyzes a large set of output similarity metrics on offensive code generators. We apply the metrics on two state-of-the-art NMT models using two datasets containing offensive assembly and Python code with their descriptions in the English language. We compare the estimates from the automatic metrics with human evaluation and provide practical insights into their strengths and limitations

    Enhancing Robustness of AI Offensive Code Generators via Data Augmentation

    Full text link
    In this work, we present a method to add perturbations to the code descriptions, i.e., new inputs in natural language (NL) from well-intentioned developers, in the context of security-oriented code, and analyze how and to what extent perturbations affect the performance of AI offensive code generators. Our experiments show that the performance of the code generators is highly affected by perturbations in the NL descriptions. To enhance the robustness of the code generators, we use the method to perform data augmentation, i.e., to increase the variability and diversity of the training data, proving its effectiveness against both perturbed and non-perturbed code descriptions

    Can NMT Understand Me? Towards Perturbation-based Evaluation of NMT Models for Code Generation

    Get PDF
    Neural Machine Translation (NMT) has reached a level of maturity to be recognized as the premier method for the translation between different languages and aroused interest in different research areas, including software engineering. A key step to validate the robustness of the NMT models consists in evaluating the performance of the models on adversarial inputs, i.e., inputs obtained from the original ones by adding small amounts of perturbation. However, when dealing with the specific task of the code generation (i.e., the generation of code starting from a description in natural language), it has not yet been defined an approach to validate the robustness of the NMT models. In this work, we address the problem by identifying a set of perturbations and metrics tailored for the robustness assessment of such models. We present a preliminary experimental evaluation, showing what type of perturbations affect the model the most and deriving useful insights for future directions.Comment: Paper accepted for publication in the proceedings of The 1st Intl. Workshop on Natural Language-based Software Engineering (NLBSE) to be held with ICSE 202

    How future surgery will benefit from SARS-COV-2-related measures: a SPIGC survey conveying the perspective of Italian surgeons

    Get PDF
    COVID-19 negatively affected surgical activity, but the potential benefits resulting from adopted measures remain unclear. The aim of this study was to evaluate the change in surgical activity and potential benefit from COVID-19 measures in perspective of Italian surgeons on behalf of SPIGC. A nationwide online survey on surgical practice before, during, and after COVID-19 pandemic was conducted in March-April 2022 (NCT:05323851). Effects of COVID-19 hospital-related measures on surgical patients' management and personal professional development across surgical specialties were explored. Data on demographics, pre-operative/peri-operative/post-operative management, and professional development were collected. Outcomes were matched with the corresponding volume. Four hundred and seventy-three respondents were included in final analysis across 14 surgical specialties. Since SARS-CoV-2 pandemic, application of telematic consultations (4.1% vs. 21.6%; p < 0.0001) and diagnostic evaluations (16.4% vs. 42.2%; p < 0.0001) increased. Elective surgical activities significantly reduced and surgeons opted more frequently for conservative management with a possible indication for elective (26.3% vs. 35.7%; p < 0.0001) or urgent (20.4% vs. 38.5%; p < 0.0001) surgery. All new COVID-related measures are perceived to be maintained in the future. Surgeons' personal education online increased from 12.6% (pre-COVID) to 86.6% (post-COVID; p < 0.0001). Online educational activities are considered a beneficial effect from COVID pandemic (56.4%). COVID-19 had a great impact on surgical specialties, with significant reduction of operation volume. However, some forced changes turned out to be benefits. Isolation measures pushed the use of telemedicine and telemetric devices for outpatient practice and favored communication for educational purposes and surgeon-patient/family communication. From the Italian surgeons' perspective, COVID-related measures will continue to influence future surgical clinical practice
    corecore